
An elegant advance in the physics of wetting

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 V11

(http://iopscience.iop.org/0953-8984/18/28/N01)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 12:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/28
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) V11–V14 doi:10.1088/0953-8984/18/28/N01

VIEWPOINT

An elegant advance in the physics of wetting

J R Henderson

School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

Received 6 June 2006
Published 28 June 2006
Online at stacks.iop.org/JPhysCM/18/V11

Abstract
The non-local interfacial Hamiltonian for short-ranged models of wetting
phenomena proposed by Parry and co-authors is discussed in the context of
the history of wetting transitions.

Equation (1) of the paper by Parry et al in this issue [1] is a strong contender for an important
new physical equation that illustrates Dirac’s assertion that the best physics is likely to be the
most beautiful:

. (1)

This is a new equation for the binding potential of the interface Hamiltonian that describes
interfacial phase transitions known as wetting transitions. Astoundingly, the coefficients a1,
b1, etc, are independent of the geometry of the substrate, indicated by the non-planar nature
of the wavy lines denoting the boundaries of the adsorbed film, so this equation can equally
be applied to the wetting of spheres and cylinders, and structured substrates such as grooves,
edges, and cones. Before attempting to summarize the physics on the right-hand side of this
wetting equation let us first recap some of the history of wetting.

Wetting denotes a wide range of fundamentally and technologically important situations
in which a bulk fluid approaches two-phase coexistence in the presence of a substrate wall (or
spectator phase) such that the incipient bulk phase first appears at the substrate. For example,
figure 1 shows an adsorption isotherm depicting the amount of liquid adsorbed from gas as a
function of chemical potential or, alternatively, representing the stability of liquid films that
have been deposited at a chosen thickness. The shape of this isotherm is appropriate to a first-
order wetting transition. If one chooses a specific chemical potential (vertical dashed line)
then the horizontal displacement to the point on the adsorption isotherm defines the disjoining
pressure �(�) of the film at thickness �. The binding potential (interface potential) W (�)

then follows from the relation �(�) = −∂W (�)/∂�. These are mean-field quantities, at this
level, because we have implicitly neglected capillary-wave fluctuations of the upper surface
of the adsorbed film away from planar symmetry. From the figure it follows that the mean-
field binding potential possesses two minima, which would be of equal depth if and only if
the shaded areas were equal. Thus we have arrived at a standard mean-field description of a
first-order phase transition, with an associated Maxwell construction. The figure has assumed
that the system is at saturation (the dashed line is the chemical potential at bulk liquid–vapour
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Figure 1. An adsorption isotherm displaying a first-order wetting transition.

coexistence), which defines the wetting transition at coexistence. Lying off coexistence (move
the dashed line to the left) is the thin–thick transition. It is also possible that the van der Waals
loop might vanish over some part of the bulk coexistence curve, leading to a continuous wetting
transition, so-called critical wetting because it is an example of interfacial critical phenomena.
So far, we have only discussed the knowledge possessed by the Russian School of Frumkin and
Derjaguin, in the 1930s [2]. This early work relied on London dispersion theory to estimate the
nature of the disjoining pressure. Two decades later Lifshitz and co-workers extended Lifshitz’s
theory of dispersion interactions to directly calculate the normal component of the pressure
tensor at the substrate, which is the disjoining pressure defined from statistical mechanics [3].
This work became a cornerstone of modern colloid and interface science, but physicists were
slow to grasp the fundamental relevance to interfacial phase transitions. This had to wait until
1977, with a paper by Cahn [4] that implied the ubiquitous presence of wetting transitions
in nature (the important albeit flawed Cahn argument) and a density functional treatment by
Ebner and Saam [5] that was ahead of its time. Soon it was realized that the full wetting phase
diagram requires an additional thermodynamic field, to represent the attraction of the substrate
to the film molecules [6]. In this extended picture, it is obvious that if one starts, say, in the
partial wetting regime, equivalent to excess adsorption forming drops with a non-zero Young’s
contact angle, and then increases the substrate field one must eventually encounter a wetting
transition to a macroscopically thick film (contact angle of zero). For theoretical physicists,
the main excitement was generated by short-ranged models of critical wetting. Since for short-
ranged models the upper critical dimension is precisely d = 3 (lower if dispersion forces are
included [7]) it was possible to work out a complex scenario involving multiple regimes of
non-universal exponents [8] that should be amenable to simulation and carefully constructed
experiments. At this stage the story should have had a happy ending, but the party was spoilt
by null results obtained from Ising model simulations [9] and this topic has remained stalled
for about two decades, until now, with the discovery of the wetting equation of Parry et al.

The difficulty with the approach by theoretical physicists concerned the reduction in the
degrees of freedom necessary to make analytic progress. For a start, molecular degrees of
freedom belonging to a fully realistic Hamiltonian are integrated out, to yield what is known
as a Landau–Ginzburg–Wilson (LGW) ‘model’, defined as a functional of a fluctuating three-
dimensional density profile. This aspect is not in doubt at a qualitative level (for short-ranged
models); instead, the problem lies with the fact that the LGW functional is too complicated
to deal with. Physicists sought to transform to a lower level of description, identical to the
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binding potential picture of Frumkin–Derjaguin apart from the addition of a standard term to
account for capillary wave fluctuations. Added together, these two simplified functionals of
the film thickness define the interface Hamiltonian. One attempt to identify the error in the
critical wetting interface Hamiltonian was based on renormalizing the prefactor of the capillary
wave term [10], but this created even worse problems by denying the very existence of critical
wetting. Now the wetting equation appears to have come to the rescue, so what is the important
physics contained in the wetting equation?

The qualitatively different physics arises because the binding potential is now non-local.
This property is represented in the wetting equation by the thick lines joining filled circles
placed at either side of the adsorbed film. Each filled circle denotes that one must integrate
over the entire surface on which it lies. The higher-order terms involve increasing numbers
of zig-zag lines and if summed up would generate the hard-wall repulsion of the underlying
substrate. However, if this aspect is put in by hand one should be able to simply use the two
leading-order terms depicted, to describe critical wetting correctly. The assertion of Parry et al
is that the previous problems have arisen because when reducing the LGW functional to an
interface Hamiltonian one must be careful to keep the non-local nature of the binding potential.
The problems with [10] are now avoided and the difficulties with simulation [9] are attributed to
a crossover regime requiring significantly larger system sizes. The beautifully simple structure
of the non-local binding potential is either an added bonus or a sign that the authors have to be
correct, depending on your philosophical approach to physics. The pictorial representation of
the wetting equation is natural to physicists because they have often preferred to view wetting
transitions in terms of fluid-mediated interactions across the film, as expressed in language
such as interface delocalization transitions. The black lines joining the filled circles represent
this interaction between the surfaces. For a standard LGW model this turns out to be the well-
known Yukawa correlation function of the bulk phase, a very general fluid mediated interaction
for short-ranged models that was already known to van der Waals and rediscovered in various
guises ever since [11]. Hence, the diagrammatic expansion is amenable to analytic evaluation
for basic models. Although the diagrammatic expansion is formally exact, one might have
anticipated that the important physical interaction is actually long-wavelength capillary wave
fluctuations leading to collisions between the interfaces, rather than straight tubes. Interestingly,
though, simulations of Ising models typically yield tube-like fluctuations, essentially as drawn
in the wetting equation, so one could quite physically interpret the higher-order diagrams in
terms of reflections of these tubes at the surfaces. In fact, this physical picture bears a strong
resemblance to the shooting algorithm of transition path sampling, developed by Chandler
and co-workers [12]. Also of relevance here is the fact that wetting transitions are strongly
constrained by an extensive body of exact results or sum rules [13]. Some of these sum rules
display an identical structure; i.e. they equate statistical-thermodynamic quantities to surface
integrals over pair distribution functions with coordinates lying on opposite sides of the film.
One such example is the sum rule for the derivative of the disjoining pressure of a fluid adsorbed
in a planar pore, with respect to the pore width. Another aspect of the wetting equation worth
stressing is the remarkably general nature of the equation. Its pictorial representation already
indicates that one can use it in any circumstance in which an incipient phase β is appearing at
an interface between a spectator phase γ and the bulk phase α. Furthermore, the coefficients
of the diagrams are independent of geometry, except perhaps from the restriction that interface
configurations do not contain overhangs. In fact, Parry et al anticipate that important results
will soon follow for adsorption at non-planar and structured substrates. Some of these situations
will be far more easy to study experimentally [14] than critical wetting, and yet will be directly
related mathematically through the wetting equation. Experimental nanoscience may therefore
have some important contributions to make to fundamental interfacial physics.
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